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Abstract—A robust ‘catch, cyclize, and release’ preparation of 3-thioalkyl-1,2,4-triazoles mediated by the polymer-bound base
P-BEMP is described. This reengineered synthesis combines the chemical efficiency of the classical synthesis (three steps; three
diversity points) with the practical benefits of resin-bound reagents (use of excess reagents to drive reactions to completion, no
purification of intermediates, automation-friendly). Key advantages/limitations of this scheme, reagent compatibility, and the
results of a representative 64-member combinatorial library are described and presented herein. © 2002 Elsevier Science Ltd. All
rights reserved.

1. Introduction

An increasing number of resin-bound reagents are avail-
able to facilitate single-step and multi-step chemical
transformations. Several reviews have now been written
to describe the development, advantages, limitations, and
applications of these solid-supported reagents.1–4 With
increasing frequency, medicinal chemists employ these
new reagents to rapidly prepare drug-like hit identifica-
tion libraries and to generate structure–activity relation-
ships during property optimization.

We became interested in 3-thio-1,2,4-triazoles owing to
the short classic synthesis (three steps; three-point diver-
sity),5,6 readily available pools of diversity reagents, and
biological activity identified during in-house high-
throughput screening efforts. As 3-thioalkyl 1,2,4-tria-
zoles were under-represented in our corporate HTS
collection, we sought a robust, easily automated, solu-
tion-phase preparation that not only reduced (or elimi-
nated) the need for isolation of synthetic intermediates
but was also complementary to reported solid-phase
methods.7

Scheme 1. Preparation of 3-thio-1,2,4-triazoles.
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In this letter, we report a robust ‘catch, cyclize, and
release’ preparation of 3-thioalkyl-1,2,4-triazoles medi-
ated by the polymer-bound base, P-BEMP. Key advan-
tages and limitations of this scheme, reagent
compatibility, and the results of a representative 64-
member array are described and presented herein.

2. Results and discussion

2.1. P-BEMP mediated synthesis

The reengineered synthesis described in Scheme 1 com-
bines the chemical efficiency of the classical synthesis
(three steps; three diversity points) with the practical
benefits of resin-bound reagents (use of excess reagents,
ease of use, automation-friendly). Central to this
scheme is the highly basic, non-nucleophilic polymer-
bound BEMP (2-tert-butylimino-2-diethylamino-1,3-
dimethyl-perhydro-1,3,2-diazaphosphorine on poly-
styrene, P-BEMP, Fig. 1).8,9 Owing to these properties,
P-BEMP is often the reagent of choice for deprotona-
tion and N-alkylation of weakly acidic heterocycles.10,11

In the ‘catch, cyclize, and release’ preparation outlined
in Scheme 1, P-BEMP plays a key role in every step of
the sequence.

In the ‘catch’ step, condensation of excess acyl hydra-
zide 1 and isothiocyanate 2 in DMF provides the
diacylhydrazide that is then rapidly sequestered by the
polymer-bound BEMP as ion-pair 3. Owing to the
resin-bound nature of 3, the excess reagents/products
(hydrazide 1, isothiocyanate 2, unsequestered diacyl-
hydrazide) and high-boiling DMF are then easily

removed during subsequent resin washing steps and
replaced with 1:1 dioxane/water, a solvent found opti-
mal for cyclization. While the cyclization rate of 3 to 4
is slower (�2–5 fold) than the classical solution-phase
approach (NaOH, MeOH, 65°C), complete cyclization
to the polymer-bound ion-pair 3-thio-1,2,4-triazole 4 is
accomplished by heating at 85°C for 16 h.12 If desired,
the cyclization rate and reaction progress can be conve-
niently monitored by removal of several milligrams of
resin from the reaction, treatment with dilute acetic
acid (1% AcOH in ACN), and subsequent LCMS analy-
sis of the released intermediates. As before, owing to
the resin-bound nature of 4, any non-acidic side-prod-
ucts produced during the cyclization are simply washed
away from the resin as acetonitrile is introduced in
preparation for the subsequent S-alkylation step (resin
washed 2×, ACN). Treatment of ion pair 4 with an
acetonitrile solution of alkylating agent 5 (rt, 1 h then
50°C, 1 h) ‘releases’ product 6 into the reaction solu-
tion. A substoichiometric amount of alkylating agent 5
minimizes the chance of product contamination as con-
sumption of 5 is typically rapid and complete. Simple
filtration, subsequent resin wash (2×), and solvent evap-
oration typically provides diverse 3-thioalkyl-1,2,4-tri-
azoles 6 in excellent LCMS purity (>80%; estimated by
ELSD)13,14 and good overall yield (30–95% based on 5).
Further, the triazoles 6 are contaminated with very
little halide (�5% by elemental analysis) as the elec-
trophile ‘leaving group’ (i.e. I, Br, Cl, tosylate) remains
sequestered on P-BEMP. Typically, no further purifica-
tion is needed.15 A representative proton NMR spec-
trum of a typical crude product 7 is shown in Fig. 2.
Additional characterization data and the generic syn-
thetic protocol used to prepare 7 (and 1,2,4-triazoles
described in Fig. 4) are provided in Ref. 16.

2.2. Reagent compatibility

Parallel paneling experiments carried out during the
library optimization phase quickly defined reagent
applicability for this P-BEMP-mediated sequence.
These experiments were typically configured in either
Bohdan MiniBlocks (polypropylene tubes) or in trays
of glass reaction vessels (Myriad CORE System)17 toFigure 1. Structures of resin-bound bases.

Figure 2. 400 MHz NMR of representative triazole 7 (crude).
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test a single class of diversity reagent. For example, to
identify suitable alkyl halides, ion-paired 3-thio-1,2,4-
triazole 8 was treated in parallel with 0.05 M solutions
of diverse alkyl halides 5 and then allowed to react
under conditions projected for library synthesis. Addi-
tional details and representative results are provided in
Fig. 3. Several observations are highlighted here.

2.2.1. Alkylating agents 5. Based on the paneling exper-
iments described in Fig. 3, reagent compatibility can be
summarized as follows. Unhindered alkyl iodides and
bromides typically provide products with excellent
purity and yield (5b,c), while unactivated alkyl chlo-
rides (5a) frequently require more forcing conditions
and subsequently result in products of lower purity/
yield. Although more variable, excellent purity and
acceptable product yields are obtained with many hin-
dered 1° and 2° alkyl iodides and bromides (5d,e).18 In
general, many electron-poor and electron-rich, hindered
and unhindered benzyl halides (5g,h), allyl halides (5f),
and �-halo esters and amides (5j,k) are successfully
employed. Aromatic halide substitution is frequently
possible with activated systems (such as 5l) but is very
substrate dependent. Alkylating agents containing func-
tional groups more acidic than the thiotriazole nucleus
(pKa �6.5) are not tolerated when using the generic
protocol.

2.2.2. Acyl hydrazides 1. Related paneling experiments
confirmed that many (un)branched alkyl (1a,e,g), sub-
stituted aryl (1c,d), heteroaryl (1b,f,h), and carbox-
amido (i.e. R1=CONH2) hydrazides are compatible
with the sequence (refer to Fig. 4 for structures).
Hydrazides may not contain functional groups that are
more acidic than the thiotriazole nucleus (pKa �6.5),

readily hydrolyzed (i.e. esters), or incompatible with
strong nucleophiles. Hydrazides with severe steric hin-
drance (i.e. 1-naphthoic acid hydrazide) do not perform
well.

2.2.3. Isothiocyanates 2. Similarly, experiments con-
firmed that many (un)branched alkyl isothiocyanates
(2a,e,h), including those containing ethers (2d), olefins
(2b) and a variety of saturated or aromatic heterocycles
(2c,f,g), are compatible with the sequence. Isothio-
cyanates should not contain �-branching (thus R2 can-
not be aryl or heteroaryl) as these analogs do not
cyclize well (3 to 4) under these reaction conditions.

2.2.4. Resin-bound base. Preliminary studies indicated
that individual reactions were faster and cleaner with
P-BEMP (Fluka cat. c 20026, 2.2 mmol/g) than with a
resin-bound guanidine base (P-TBD, Fluka cat. c
90603). This is presumably due to P-BEMPs increased
basicity, lower nucleophilicity, and better dispersion
properties especially in these polar solvents.8,9

2.3. Applications

Using this reagent compatibility information, more
than 2500 diverse, yet drug-like,19 triazoles were pre-
pared for hit identification purposes. The 64 com-
pounds highlighted in Fig. 4 are a representative subset
of a larger hit identification array. With little or no
protocol modification, this robust ‘catch, cyclize, and
release’ strategy was used successfully on a number of
manual and automated synthesis platforms (Myriad
CORE System, Bohdan MiniBlock, Argonaut Quest
210). More recently, this convenient solution-phase
method was applied to a number of hit optimization

Figure 3. Representative results of paneling experiment—alkylating agents 5.
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Figure 4. Results for representative subset of hit identification array.

efforts. These efforts will be the subject of future
communications.

3. Conclusion

In this letter, we report a robust ‘catch, cyclize, and
release’ preparation of 3-thioalkyl-1,2,4-triazoles medi-
ated by the polymer-bound base, P-BEMP. The reengi-
neered synthesis marries the chemical efficiency of the
classical synthesis (three steps; three diversity points)
with the practical benefits of resin-bound reagents
(excess reagents, ease of use, automation-friendly). We
believe this is the first reported solution-phase synthesis
of 3-thioalkyl-1,2,4-triazoles that benefits from the use
of excess reagents to drive reactions to completion, yet
does not require purification of either synthetic interme-
diates or final products.20 Efforts to extend this ‘catch,
cyclize, and release’ strategy to other heterocyclic
families are on-going and will be the topic of future
reports.
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